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Abstract. A simple type of liquid-state model is proposed to describe on a primitive level the 
melt of an elemental group IV semiconductor as a mixture of atoms and bond particles. The 
latter, on increase of a coupling strength parameter become increasingly localised between 
pairs of atoms up to local tetrahedral coordination of atoms by bond particles. Angular 
interatomic correlations are built into the model as bond particle localisation grows, even 
though the bare interactions between the components of the liquid are formally described 
solely in terms of central pair potentials. The model is solved for liquid structure by standard 
integral equation techniquesof liquid-state theory and by Monte Carlo simulation, for values 
of the parameters which are appropriate to liquid germanium down to strongly supercooled 
states. The calculated liquid structure is compared with the results of diffraction experiments 
on liquid germanium near freezing and discussed in relation to diffraction data on amorphous 
germanium. The model suggests simple melting criteria for elemental and polar semi- 
conductors, which are empirically verified. 

1. Introduction 

Simple models of interatomic forces have had an important role in advancing qualitative 
and quantitative understanding of condensed matter. In relation to properties of the 
liquid state, the fluids of neutral and charged hard spheres, the classical one-component 
plasma and the Lennard-Jones fluid have played such a role under two main aspects. 
Not only do they mimic classes of real fluids, but also provide simple test models for 
progress in statistical mechanics through joint theoretical and computer simulation 
studies. 

Bond directionality is a qualitative feature of many real systems which is missing in 
the models mentioned above. It can be accounted for by invoking three-atom con- 
tributions to the model potential energy function in addition to pair potentials, as in the 
model proposed by Stillinger and Weber (1985) for computer simulation studies of 
crystalline and liquid silicon and used for amorphous silicon by various other authors 
(Luedtke and Landman 1988, and references therein). However, such models are 
hardly amenable to solution by current theoretical techniques, and indeed a more basic 
approach is now available for computer simulation of relatively simple covalent systems 
(Car and Parrinello 1988). Still at a modellistic level, alternatives to a many-body 
description of the potential energy function in fluids with highly directional forces can 

0953-8984/89/091679 + 16 $02.50 @ 1989 I O P  Publishing Ltd 1679 



A Ferrante and M P Tosi 

nevertheless be expected to be useful. Thus, the model proposed by Smith and Nezbeda 
(1984), which relies on near-peripheral attraction sites to describe associated fluids, has 
been used in Monte Carlo studies of hydrogen bonding in water and methanol (Kolafa 
and Nezbeda 1987) and significant progress has been made in its solution by theoretical 
integral equation techniques (Wertheim 1988). 

The Smith-Nezbeda model is naturally adapted to mimic phenomena of association 
and polymerisation occurring in hydrogen-bonded molecular fluids. It may possibly 
provide a useful starting point to deal with the network-like liquids and glasses formed 
by a number of ionic-semiconducting compound materials. The melting behaviour of 
group IV elemental and group 111-group V polar semiconductors is however quite 
different (see for instance, Ubbelohde 1978). These crystallise at standard pressure in 
tetrahedrally coordinated open structures and a network-like amorphous state, having 
analogous local coordination and semiconducting properties, can be prepared for the 
elements by suitable laboratory techniques. Melting occurs with a shrinkage in specific 
volume, a marked increase in near-neighbour coordination and a change of electrical 
transport character to metallic-type conductivity. Such radical changes in atomic and 
electronic structure on melting can be viewed in a primitive chemical picture of bonding 
as associated with a release of valence electrons from interatomic bonds into conducting 
states. 

The above elementary picture of semiconductor melting recalls to mind the bond 
charge model proposed by Phillips (1970) for crystalline elemental semiconductors 
(Ferrante et a1 1988). The model represents the electronic charge distribution in each 
covalent bond as a point-like charge of suitable amount, localised at mid-distance 
between each pair of neighbouring atoms. The bond charges participate in the lattice 
dynamics and indeed an important application of the model has been its use in the 
calculation of phonon dispersion curves in crystalline semiconductors by Martin (1969) 
and several other authors (see for instance, Miglio et a1 1988 for an application to surface 
phonons in silicon). Extension to a primitive model for the melt should allow freedom 
for Phillips’ bond particles to leave the bond, though retaining the possibility of partial 
localisation up to a maximum of four bond particles around one atom. 

Such a primitive model for semiconductor melts is explored in the present work with 
specific application to the liquid structure of germanium as a test case. The startingpoint 
is the well known model of a two-component liquid as a mixture of hard spheres (of very 
different sizes in the present case). The bond particle component is subject to localisation 
between pairs of atoms by attractions to the atomic component. Localisation is con- 
strained by an upper limit of four on the local coordination of atoms by bond particles 
through non-additivity of hard-sphere diameters, by fixing a distance of closest approach 
between bond particles from the size of a tetrahedron inscribed in the atomic sphere. 

The main aim in examining the model as formulated above is to follow the structural 
evolution of both the atomic (A) component and the bond particle (B) component as 
temperature is lowered from hot liquid states to strongly supercooled states. Direc- 
tionality of effective atom-atom interactions and angular interatomic correlations, ulti- 
mately leading to fourfold coordination, are progressively built into the model as 
localisation of bond particles sets in and grows. Thus the model can offer some insight 
into disordered states of semiconductors, which is complementary to that gained from 
theories of their metallic melt based on effective atom-atom interactions from the 
electron theory of metals (Hafner and Kahl 1984) and from many-atom descriptions of 
the potential energy function (Luedtke and Landman 1988, and references therein). 

Since only central pair potentials are formally involved in describing the A-A, A-B 
and B-B interactions, the model can be solved for liquid structure by standard integral 
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equation techniques of liquid-state theory. We examine its solution in the hypernetted 
chain approximation (HNC) and in one of its currently available refinements (HMSA) due 
to Zerah and Hansen (1986). We also present the results of Monte Carlo simulation 
runs, which test the quantitative accuracy of the above approximations in the previously 
untried context in which we are using them. 

Equilibration of the simulation sample and reliable statistics after equilibration 
require uncommonly long Monte Carlo runs at relevant values of the model parameters. 
It is therefore advantageous to deal with a short-range type of A-B attraction. We study 
in the aforementioned detail a modification of Phillips' model in which the A-B attraction 
is given by a very localised potential well on the atom's surface, relying for this purpose 
on the analysis of phonon dispersion calculations given by Weber (1977). However, in 
anticipation of extensions to polar compounds, we examine in the HNC also a model of 
the melt which invokes only Coulomb interactions between the components of the fluid. 
In both cases the calculations cover a range of values for the ratio of A-B coupling 
strength to thermal energy which extends to strongly supercooled states of liquid 
germanium. The growth of bond particle localisation with growing A-B coupling pro- 
ceeds with somewhat different modalities under pure Coulomb interactions as opposed 
to localised attractions. Nevertheless these two extreme alternatives yield consistent 
pictures for the liquid structure of germanium near freezing, at values of the A-B 
coupling strength which are in essential agreement with the known values of the bond 
charge in the crystal and of its valence-conduction band gap, respectively. 

2. Presentation of the model 

We consider a two-component fluid of hard spheres, with components A and B having 
number density nA and nB = 2nA at temperature T. The hard-sphere interactions are 
characterised by three distances of closest approach (a,,, aAB and oBB, say). In the 
problem at hand the relevant values of the hard-sphere contact distances are asked to 
satisfy the approximate relations crAA = 2 a A B  S d ,  where d is the first-neighbour distance 
in the liquid, and o B B B  (2/3)'/*0,,. These relations imply that, even though the B 
component is essentially point-like compared with the A component, no more than four 
B particles can be found in immediate contact with any A particle. This feature of the 
model is to be contrasted with the primitive model of a liquid alloy as a mixture of hard 
spheres (Ashcroft and Langreth 1967, Enderby and North 1968), in which additivity of 
hard-sphere diameters is imposed by setting aAB = (aAA + a,B)/2. 

We next introduce interactions which lead to strong relative ordering of the two 
components in the liquid, considering two alternative cases. The first choice (localised 
attraction model (LAM)) introduces an attractive interaction between A and B particles 
in the form of a narrow potential well centred at a distance d / 2  from the centre of each 
A particle and uniformly spread over its surface (see figure 1). The well is taken to have 
a Gaussian shape of half-width a and depth V ,  with 0 = i d  - aAB. The well depth V 
enters the model only in units of the thermal energy kBT,  yielding a coupling strength 
parameter V* = V / k B T  which will be allowed to increase continuously from zero in 
order to follow the process of localisation of the bond particles. For liquid germanium 
near freezing, estimating Vfrom the valence-conduction band gap of the crystal at room 
temperature (V  = 0.7 eV), we anticipate V* = 6. 

The second alternative that we explore for the origin of relative order of the com- 
ponents of the liquid is closer to Phillips' original bond charge model (BCM). The hard 
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Figure 1. Atom-bond particle interaction potential versus distance in the LAM. 

spheres are assigned charges in amounts Z,e and ZBe respectively, with ZB = -BZ,. 
The A-B coupling strength is now measured by the ‘plasma parameter’ = 
Z’,e2/(akBT),  the length a being related to the liquid density by a = (4~n, ) - l /~ .  Again 
this parameter will be allowed to increase continuously from zero in the calculations 
presented in § 5 below. Phillips’ original estimate was lZBl = 0.5 for germanium, cor- 
responding to two electronic charges screened by the dielectric constant of the material, 
while fits of the phonon dispersion curves in crystalline germanium by Martin (1969) and 
Weber (1977) yieldvaluesof IZB/ equal to 0.65 and0.40, respectively. The corresponding 
value for 

A combination of Coulomb interactions and short-range attractions may actually 
turn out to be necessary in an extension of the model to polar semiconductors, which is 
otherwise easily envisaged in terms of adjustments in the distances of closest approach 
of the various components and of the equilibrium position for a bond particle. In relation 
to elemental semiconductors, we may comment at this point on the relationship between 
the two alternative treatments of ordering interactions that we are considering. The 
analysis given by Weber (1977) for phonon dispersion curves in the crystal is illuminating 
in this respect. He found only minor changes in the calculated dispersion curves upon 
replacing Coulomb and central interactions of ions and bond charges by short-range 
central and non-central interactions along one bond. His conclusion was that the long- 
range part of the Coulomb forces is unimportant. As we shall see, this conclusion still 
holds in the liquid near freezing. We may also explicitly note here that the role played 
in Weber’s models by bond-bending and non-central forces is taken up in our model for 
the liquid, at appreciable values of the A-B coupling strength, by the simple requirement 
made on the distance of closest approach between bond particles. 

The calculations reported below refer to two choices of the liquid density and 
first-neighbour distance, which are taken from experiments on germanium. For liquid 
germanium at T = 1253 K, which is somewhat above the freezing point at atmospheric 

appropriate to germanium near freezing is in the range 50-20. 
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Table 1. Sets of model parameters used in the calculations. 

nA(A-’) d ( A )  O A d d  O d d  O d d  Old 

Set 1 0.0461 2.63 0.94 0.475 0.80 0.050 
Set2 0.0429 2.46 0.95 0.475 0.76 0.050 
Set3 0.0429 2.46 0.98 0.475 0.81 0.050 
Set4 0.0429 2.46 0.98 0.500 0.81 - 

pressure, one has nA = 0.0461 A-3 (Glazov et aZ1969) and d = 2.63 8, from the neutron 
diffraction experiments of Gabathuler and Steeb (1979). In amorphous germanium, on 
the other hand, the density depends on film deposition rate and on film thickness, being 
at most equal to 97% of the crystalline density (see for instance, Viscor 1988). We have 
considered such a value of the density (nA = 0.0429A-3) as our second choice, in 
combination with the value d = 2.46 8, from the diffraction experiments of Etherington 
et a1 (1982) on amorphous germanium at room temperature. This value of the first- 
neighbour distance is practically the same as in the crystalline phase. Finally, the various 
choices that we shall illustrate for the hard-sphere contact distances and the well half- 
width, within the prescriptions noted earlier in this section, are collected for convenience 
in table 1. We shall comment later on these specific choices as the opportunity arises. 

3. Solution of the model for the liquid structure 

The liquid structure of the model is described by the partial pair distribution functions 
gaP(r), which are defined as usual by setting equal to 4xr2npgWB(r) d r  the number of 
particles of type /3 (with p = A or B) within a spherical shell at distance rfrom a particle 
of type a (with a = A or B). The partial structure factors Sep(k) are then given by 

S,(k)  = 6, + 4 ~ c ( n , n ~ ) ’ / ~  haB(r) exp(ik 0 r )  r2 d r  (1) C 
where h,@(r) = geg(r) - 1. The direct correlation functions ceB(r) are further introduced 
through the Pearson-Rushbrooke integral equations 

The cumulative coordination numbers Nmp(R) are calculated from the integrals 

N a P ( R )  = 4nnp gEp(r) r2 dr .  (3) joR 
The near-neighbour coordination numbers Nmp that we shall report are obtained by 
making the integration limit R equal to the position of the first minimum in the cor- 
responding gap(r). 

Solution of the model for increasing values of the coupling strength V* or r is first 
found in the HNC. This imposes on the integral equations (2) the approximate closure 

g&) = exp(-@.,p(r) + ha&) - Cm&)) (4) 

where QaB(r) are the pair potentials in units of kBT. Of course, the hard-sphere part of 
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the pair potentials simply leads to gep(r) = 0 for r < crap. The method followed for the 
numerical solution of the combined sets of equations (2) and (4) is that developed for 
two-component charged liquids by Abernethy and Gillan (1980). Special attention is 
taken in handling the discontinuities introduced in the direct correlation functions at 
contact by the hard-sphere part of the interactions. Our calculations adopt a set of 
eight basis functions for an approximate representation of the functions hep(r) - C , ~ ( Y ) ,  

combined with refinement on a mesh of 516 points with spacing equal to 0 .02~ .  A suitably 
large range of wavenumber k must be adopted for Fourier transforms being taken during 
the iterative numerical solution at large values of the A-B coupling strength, where the 
partial structure factors show relatively long-range oscillations. 

The solution of the LAM is also sought in the HMSA, which improves on the HNC closure 
by combining it with a modified mean spherical approximation at short interparticle 
distances (Zerah and Hansen 1986). Precisely, equation (4) is replaced by 

where @$d(r) denotes the repulsive part of the pair potentials, @ f & ( r )  is the attractive 
part of the A-B pair potential shown in figure 1, and @fk(r) = @gA(r) = 0. Further, 
the mixing functionsfep(r) have the form 

fap(r) = 1 - exp(-br/o,p) (6) 

and the parameter b is to be determined by imposing consistency between the virial 
compressibility and the compressibility from the thermodynamic fluctuation formula. 
The numerical method of solution of (2) and (5) is the same as used in the HNC. 

Finally, the solution of the LAM is also found by a canonical-ensemble Monte Carlo 
simulation method over a wide range of values for the A-B coupling strength. The 
simulation sample consists of 64 particles of type A and 128 particles of type B in a box 
of side L = 9.2996~ with periodic boundary conditions. The system is started on a 
diamond structure at V* = 1 and allowed to equilibrate itself into a disordered state over 
lo6 steps, the behaviour of the density fluctuation variables at the (1,1,1) Bragg reflection 
being monitored during this process. The pair distribution functions gUp(r)  are then 
sampled at a series of increasingly larger values of V" with a statistics built from lo6 steps 
following successive equilibrations lasting lo6 steps. Each equilibration process is started 
from the equilibrium configuration appropriate to the preceding value of V" and is 
followed by monitoring the pressure and the internal energy. The limited size of the 
sample limits reliable information to the first two interatomic coordination shells. 

4. Results for the LAM 

Figure 2 shows the partial pair distribution functions and the partial structure factors as 
calculated in the HNC for coupling strength V* equal to zero. These results are the starting 
point of all our liquid-structure calculations and can be compared with liquid structure 
in additive models for mixtures of hard spheres with very different diameters, for both 
neutral fluids (Ashcroft and Langreth 1967) and charged fluids (Gillan et a1 1976). In 
both these cases some degree of relative order of the two components is signalled by a 
valley in SAB(k) in approximate correspondence with the main peak in SA,(/?), while 
SBB(k) (the structure factor for the small-sized component) is essentially featureless. As 
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Figure 2. Partial structure factors SCB(k)  (left) and pair distribution functions g n p ( r )  (right) 
for the LAM (set 1) at V* = 0 in the HNC. Full curves, A-A correlations; dotted curves, A-B 
correlations; broken curves, B-B correlations. 

is evident from figure 2 ,  our choice of CTBB from the tetrahedron rule builds sharp structure 
in S B B ( k )  and in &B(r) ,  while it preserves and indeed somewhat strengthens the relative 
order of the two components. Localisation of B particles is nevertheless absent. This is 
clearly shown by the high value attained by g A B ( r )  at its main minimum, which reflects 
essentially free exchange of B particles among their first and second coordination shells 
around A particles. 

4.1. Localisation of bond particles and the structure of liquid germanium 

Table 2 shows how localisation of B particles proceeds in the HNC with increasing V* at 
constant density and the structural changes that it induces in the A component of the 
liquid. The degree of localisation can be gauged through the coordination number N A B ,  

the position R A B  of the main minimum in gAB(Y) ,  and the value of g A B ( R A B ) .  Table 2 
reports these values as well as those appropriate to the same quantities for A-A and 
B-B pairs. 

Two rapid changes in structural behaviour are seen to occur in narrow ranges of V* 
as this parameter is increased. Firstly, for V* in the range 1-2 there is a rapid drop of 
N A B ,  from N A B  = 5.5 to N A B  = 2.7, as well as in R A B ,  from R A B  = 0.9d to R A B  = 0.6d. 
Recalling the definition of N A B  given in 3 3,  incipient localisation of B particles is 
occurring in the region of near-contact with A particles, although exchange with the 
surrounding liquid is still quite free ( g A B ( R A B )  = 0.8). Henceforward, localisation grows 
with increasing V* through a slow increase in N A B  and a fairly rapid drop in g A B ( R A B ) ,  

while R A ,  remains essentially constant. The next rapid change in structural behaviour 
occurs for V* in the range 6-7. Here, R A A  drops rapidly from R A A  = 1.5d to R A A  ==1.2d 
and N A A  drops by essentially a factor of two to N A A  = 6.8. Evidently, localisation of B 
particles has become sufficiently strong that the first A-A coordination shell is being 
split into two shells. At this point the A-A pair distribution functions start to resemble 
qualitatively the observed gGeGe(r) in real liquid germanium, having locally the shape of 
two neighbouring coordination shells separated by a shallow minimum and with a first 
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Table 2. Coordination numbers and properties of the main minimum in the HNC pair 
distribution functions for the LAM. 

Liquid density, set 1 
0 6.48 0.97 0.82 
0.5 6.03 0.94 0.83 
1 5.46 0.91 0.84 
2 2.66 0.67 0.77 
3 2.67 0.64 0.55 
4 2.77 0.64 0.37 
5 2.88 0.63 0.25 
6 3.01 0.63 0.16 
7 3.12 0.63 0.099 
7.5 3.17 0.63 0.078 
8 3.21 0.63 0.061 

10 3.36 0.63 0.023 
14 3.57 0.63 0.0029 
18 3.71 0.63 0.0006 

Amorphous density, set 3 
14 3.19 0.64 0.0023 
18 3.35 0.64 0.0003 

10.5 1.47 
10.5 1.47 
10.3 1.46 
10.3 1.46 
10.4 1.46 
10.6 1.47 
11.0 1.49 
12.4 1.55 
6.85 1.28 
6.53 1.24 
5.94 1.22 
5.37 1.19 
5.04 1.16 
5.03 1.15 

4.36 1.24 
4.28 1.22 

0.81 11.3 1.19 0.72 
0.81 11.3 1.19 0.71 
0.82 11.3 1.19 0.71 
0.83 11.2 1.18 0.70 
0.85 10.9 1.17 0.69 
0.87 10.5 1.15 0.68 
0.90 10.2 1.14 0.67 
0.92 9.96 1.12 0.65 
0.94 9.76 1.11 0.62 
0.94 9.75 1.11 0.62 
0.93 9.58 1.10 0.61 
0.86 9.39 1.07 0.58 
0.86 9.07 1.07 0.52 
0.63 8.93 1.06 0.47 

0.84 7.16 1.10 0.60 
0.72 7.03 1.08 0.53 

neighbour coordination of order 6.5-6.8 (Waseda and Suzuki 1975, Gabathuler and 
Steeb 1979, Waseda 1980). 

It is also seen from table 2 that upon further increase of V" the coordination number 
NAB slowly moves towards the value 4, while localisation of B particles becomes essen- 
tially complete ( g A B ( R A B )  = 0). At the same time N A A  decreases steadily, but appears 
to approach the value 5 rather than 4 when the density is maintained equal to the liquid 
density. The B-B distribution function shows only a smooth variation throughout all 
these structural arrangements, with N B B  approaching the value N B B  = 9 for V* = 20 at 
the liquid density. We note that the bond-centre-bond-centre coordination number in 
the ideal diamond structure is equal to 6. 

In order to make contact with properties of amorphous germanium, it is crucial to 
take account of its reduced density. This is shown in the bottom part of table 2, which 
reports the final stages of the same structural evolution when followed at the appropriate 
density. The only qualitative changes are that now both N A B  and NAA are approaching 
the value 4, from below and from above respectively, and that N B B  touches the value 7 
at V* = 20. We also note that this value of the coupling strength is fairly low relative to 
what we would estimate for amorphous germanium at room temperature (V* = 30, 
taking into account V* = 7 for the freezing liquid and a drop of temperature by a factor 
4). We shall return to this point in § 4.2 in discussing the limitations of the HNC. 

The evolution of liquid structure with increasing V* at constant density is also shown 
through the HNC partial structure factors in figure 3. Upon incipient localisation of B 
particles at V* = 1-2, the valley in S A B ( k )  is shifted towards the position of the main 
peak in S B B ( k )  and a prepeak grows in correspondence with the main peak in S A A ( k ) .  

Splitting of the A-A first coordination shell into two shells at V* = 6-7 appears in SA,(k) 
as a new structure in the main peak, in the shape of a shoulder on its large-k side. A well 
known qualitative feature of the observed structure factor of liquid germanium is the 
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Figure 3. Partial structure factors S, , (k)  (left), S,,(k) (right, dotted curves) and SBB(k) 
(right, full curves) for the LAM (set 1) in the HNC at a series of values of V* (V* = 0,3,5,7.5, 
14 and 24, the first and last values being marked in the figures). The broken lines give the 
HMSA results for I/* = 24 and b = 1. 

ko r/o 

Figure 4. HNC partial structure factor S,,(k) (left) and pair distribution function gAA(r )  

(right) for the LAM (set 1) at V* = 7.5 (full curves) and for the BCM (set 4) at r = 24 (broken 
lines). The circles report x-ray diffraction data on liquid germanium at T = 1253 K from 
Waseda and Suzuki (1975). 

presence of such a shoulder near freezing, becoming an asymmetry in the peak shape at 
appreciably higher temperatures (Gabathuler and Steeb 1979). We note from figure 3 
that the position of the shoulder in S,,(k) lies in correspondence with the main peak in 
SBB(k). On further increase in V* the shoulder grows into a strong peak at essentially 
unshifted position, while the former main peak is reduced to a prepeak at progressively 
lower wavenumbers. We shall return in § 4.2 below to discussing other aspects of the 
results in figure 3 in relation to the question of the quantitative accuracy of the HNC. 

It would clearly be futile to aim at more than a qualitative comparison between 
theory and experiment. Nevertheless, we report in figure 4 the HNC results for gAA(r) 
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and SAA(k) at V* = 7.5 together with the liquid-structure data on germanium near 
freezing, from the x-ray diffraction experiments of Waseda and Suzuki (1975) (see also 
Waseda (1980)). We have tried to eliminate irrelevant noise from such a comparison by 
a suitable choice of oAA, leading to the model parameters in set 1 (table 1). Moderate 
changes of the values of the parameters around these preferred values do not alter the 
quality of the comparison appreciably. We note from the figure that the HNC solution 
of the model mimics the observed structure to a remarkable degree. Obviously, the 
discontinuity in gAA(r) at contact and the small peak in gAA(r) at r = 20AA are con- 
sequences of the hard-sphere schematisation and could easily be remedied by introducing 
appropriate soft-core repulsive potentials. The other points to be noted concern the 
shape of the main minimum and the second coordination shell in g ( r ) ,  as well as the 
dephasing of the oscillations in S ( k )  at large k. While the latter could largely be remedied 
by adopting a slightly larger value for uAA, this would further smooth out the shallow 
minimum and the second coordination shell ingAA(r). The behaviour of gAA(r) that the 
model should show in this crucial region of interatomic distance is in fact rather poorly 
represented by the HNC, as we shall see immediately below. 

4.2. Quantitative analysis of the liquid-structure theory 

The quality of the HNC solution will now be discussed through comparisons with the 
corresponding HMSA solution and with the results of our Monte Carlo runs. All the 
calculations in this section refer to the amorphous state density and to the parameters 
of set 2 in table 1, where the tetrahedron rule has been somewhat relaxed. This choice 
for the density and for oBB is motivated by the need to accelerate the equilibration rate 
and to reduce the length of the sampling runs in the simulation, down to the still rather 
large numbers of steps stated in 8 3. 

Figure 5 shows the HNC results for g ( r )  at V” = 5 in comparison with the Monte 
Carlo results. It is seen that the HNC solution is still fully quantitative up to this value of 
the coupling strength, except in the values at hard-sphere contact (only partly shown in 
the figure). The HMSA solution is very similar to the HNC and to the data over this range 
of V”. 

Figure 6,  on the other hand, shows that some quantitative discrepancies between 
theory and simulation arise already at V“ = 7.5. The present discussion, although based 
on figure 6,  will also take account of tests that we have carried out at larger values of V:‘ 
and do not illustrate by means of figures. In general, we find that good quantitative 
agreement between HNC and simulation persists for gAB(r) and gBB(r) to large values of 
V*. However, the HNC seriously underestimates the depth of the main minimum in 
,gAA(r) and thus the stability of the first interatomic coordination shell that the model 
implies. 

This defect of the HNC solution is not remedied by the HMSA, which in addition has 
theunpleasantfeature ofyieldingaslightlynegativevalueforg,,(r) at itsmainminimum. 
This is shown in figure 6 for V* = 7.5, where thermodynamic consistency has been 
reached at the value b = 1 for the constant in the mixing function of (6). At appreciably 
larger values of V”, the pressure in the HMSA drifts towards negative values, thus 
preventing a full implementation of the thermodynamic consistency requirement. 

On the other hand, the HMSA has much better control on the low-k behaviour of the 
structure factors at very large values of V*. This is shown in figure 3 at V* = 24. It is seen 
there that the partial structure factors almost diverge at long wavelengths in the HNC, 
thus preventing the extension of this approximate theory to larger values of V*. The 

“P 



Bond particle model for semiconductor melts 1689 

4 -  

3 -  

- .  
L 
I 

2 -  

1 -  

3 -  

- 2 -  

ma 
I 

c 

1 -  

I 

1.5 

I 

I 

r / a  

Figure 5 .  Partial pair distribution functions gn,j(r) in the LAM (set 2) at V” = 5 .  Full lines, 
HNC results; circles, Monte Carlo results. 
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Figure 6. Partial pair distribution functions gaP(r) in the LAM (set 2) at V” = 7 . 5 .  Full 
lines, HNC results; broken lines, HMSA results corresponding to b = 1 as obtained from 
thermodynamic consistency; circles, Monte Carlo results. 

HMSA structure factors have instead a reasonable behaviour at this and higher values of 
V* , although full thermodynamic consistency cannot be achieved for the reason already 
given. 



1690 A Ferrante and M P Tosi 

r / a  

Figure 7. Monte Carlo results for the partial pair distribution functionsgep(r) in the LAM (set 
2) at V* = 22. 

4.3. Structure in supercooled liquid states in relation to amorphous germanium 

The structural behaviour of the model at a large value of V* is illustrated in figure 7 
through Monte Carlo results obtained with set 2 of the parameters in table 1. Only 
qualitative comparison can be made with the diffraction data of Etherington eta1 (1982) 
on amorphous germanium, which refer to room temperature and a much lower density. 
Their data show complete stability of the first interatomic coordination shell (gGeGe(r) 2: 
0 at its main minimum) and a second interatomic coordination shell which is appreciably 
sharper than shown for gAA(r) in figure 7 .  Presumably, closer contact with the data on 
the medium-range topology of the amorphous state could be made if the tetrahedron 
rule were more strictly enforced in the model. This would require much longer simulation 
runs or, preferably, an appropriate quantitative improvement of the HNC theory. 

With regard to the A-A partial structure factor in strongly supercooled states, we 
may refer again at this point to the HNC and HMSA results shown in figure 3 for V* = 24. 
We wish to draw specific attention to the position and shape of the prepeak in SAA(k),  
in relation to the diffraction data on amorphous germanium. It is seen from figure 3 that 
the prepeak is somewhat sharper in the HMSA than in the HNC, but still considerably less 
resolved than in the experiment and located at ka = 3.1 rather than at ka = 2.42. 
Through purely empirical reshaping of the first two coordination shells in gAA(r), guided 
by the Monte Carlo data in figure 7, we have found that the position of the prepeak in 
SAA(k)  can be shifted to values of ka which are even below the experimentally observed 
one, Thus the prepeak in the structure factor reflects the detailed nature of medium- 
range correlations, as Etherington et a1 (1982) have pointed out in the analysis of their 
data. It may be noted, on the other hand, that the longer-range interatomic correlations 
in space, as described by the positions of the successive peaks in gAA(r), are in good 
approximate agreement with the diffraction data (Ferrante et a1 1988). 
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Table 3. Coordination numbers and properties of the main minimum in the HNC pair 
distribution functions of the BCM (set 4). 

r NAB 

0 6.32 
5 4.73 

10 3.89 
15 3.61 
20 3.47 
24 3.43 
43.5 3.46 
58.7 3.53 
65.4 3.55 

1.07 
0.94 
0.86 
0.82 
0.79 
0.77 
0.73 
0.71 
0.71 

g A B ( R A B  

0.85 
0.79 
0.65 
0.50 
0.39 
0.31 
0.09 
0.03 
0.03 

NAA 

10.2 
10.6 
10.4 
9.26 
7.64 
6.62 
5.05 
4.70 
4.71 

R A A / d  

1.60 
1.62 
1.61 
1.55 
1.46 
1.40 
1.30 
1.27 
1.27 

g / A A ( R A A )  

0.85 
0.88 
0.90 
0.93 
0.96 
0.96 
0.87 
0.79 
0.77 

~~ ~~ 

NBB R B B / d  g B B ( R B B )  

11.1 1.30 0.82 
11.3 1.31 0.80 
10.9 1.29 0.78 
9.98 1.25 0.74 
9.33 1.22 0.71 
8.93 1.20 0.68 
7.77 1.13 0.55 
7.46 1.10 0.48 
7.45 1.10 0.46 

5. Results for the BCM 

As already mentioned in 01, we have carried out only HNC calculations for the bond 
charge model, following its structural evolution with increasing coupling strength r or 
equivalently increasing bond charge /ZB/. The hard-sphere contact distances (set 4 in 
table 1) are the same as in set 3 for the LAM, except that has been set equal to d/2 in 
order to preserve the location of the equilibrium position of the bond particles at the 
centre of the bond. 

The main qualitative structural difference between the BCM and the LAM is that 
bond particle localisation and structural rearrangements with increasing A-B coupling 
strength proceed more smoothly in the former model. The localisation process is illus- 
trated in table 3, which should be compared with table 2 for the LAM. We draw attention 
in particular to the behaviour of N A B  in table 3, showing a monotonic drop from N A B  = 
6.3 at r = 0 to N A B  = 3.5 at large r. Similarly, the coordination number N A A  drops 
smoothly from N A A  = 10.3 at r = 0 to N A A  = 6.6 at I' = 24, where contact with the 
properties of real liquid germanium appears to be made. At this and higher values of r, 
the behaviour of the BCM is qualitatively similar to that of the LAM. We conclude that the 
long-range part of the Coulomb interactions has essentially unimportant structural 
consequences once appreciable localisation of the bond particles is present. 

The partial structure factors of the BCM at r = 24 are compared with those of the LAM 
at V* = 7 . 5  in figure 4 (for A-A correlations) and in figure 8 (for A-B and B-B 
correlations). Again, only differences of quantitative detail are apparent between the 
two models at these values of their respective coupling strengths. 

6. Melting criteria 

We have seen in §§ 4 and 5 that the model liquid structure qualitatively resembles the 
structure of real liquid germanium when the coupling strength parameter takes the 
approximate values V* = 7 . 5  or r = 24. Given the melting temperature and the density 
of germanium, these values are close to those anticipated in 0 2 from the observed band 
gap E,  in the crystal (E ,  = 0.7 eV) and from the estimated value of the bond charge 
(lZ,/ = 2 / f i 0 ,  being the dielectric constant of the crystalline material). 
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Figure 8. HNC partial structure factors S,,(k) and S,,(k) in the BCM (set 4) at r = 24 (full 
curves) and in the LAM (set 1) at V* = 7.5 (broken curves). 

We now ask whether there is any generality to these results. Namely, we ask whether, 
for semiconductors which melt with a break-up of chemical bonding, one can formulate 
melting criteria in the forms 

E,/kBTm = constant (7)  

4e2/(&,,ak~Tm) -- constant (8) 

or 

at the melting temperature T,. 
Figure 9 shows that both criteria are approximately satisfied for atmospheric pressure 

melting in group IV elements and group 111-group V compounds. Figure 9 uses data on 
T,, E,, E~ and the density from Landolt-Bornstein, New Series (1982). The constants in 
(7) and (8) are found from the plots in figure 9 to be approximately equal to 10 and to 
20, respectively. These values are in essential accord with the values of V and r obtained 
from our model for germanium near freezing. 

7. Discussion and summary 

We have examined in this work a statistical mechanical model for a special class of liquids, 
which is appropriate to work on the lattice dynamics of crystalline semiconductors and 
has qualitative relevance to the melting of these materials. 

Relative to previous models in liquid-state theory the special new feature is the 
possibility of varying the degree of localisation of a component in the liquid and of 
building through it a degree of directionality in the effective interactions between 
the other components. It is clear from our results that established integral equation 
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T, ( K l  

Figure 9. Correlation of the melting temperature T,,, of elemental semiconductors and III- 
V compounds with the valence-conduction band gap E,  (left) and with the quantity n ' ' 3 / ~ ( ,  
(right), where n is the number of atoms per unit volume and E" the static dielectric constant 
of the crystal. 

techniques of liquid-structure theory are still useful in this context, but cannot handle 
localisation and its consequences in a fully quantitative manner and may indeed break 
down when the model parameters are stretched very far. Further efforts at refining the 
theory for this type of model would seem to be worthwhile. 

The specific results that we have presented provide a reasonable pseudoclassical 
scenario for the structural behaviour of ions and electrons in a molten semiconductor, 
as it is cooled from a very high temperature towards the freezing point. A qualitative 
prediction is that the degree of electron localisation in the melt near freezing is quite 
high. This feature is consistent with molten semiconductors being rather poor metallic 
conductors and is one of the points of interest in current developments in the study of 
molten silicon by the Car-Parrinello method (Stich 1988). Complete localisation occurs 
in our model in strongly supercooled states, but only imperfect contact can as yet be 
made with the observed medium-range topology of the atomic structure in amorphous 
germanium. 

Finally, our approach has led us to suggest melting criteria for semiconductors, which 
we have seen to be empirically verified. The melting criterion involving the band gap is 
perhaps not unexpected, although we have not been able to find it already noted in the 
literature. The melting criterion based on the bond charge concept is less obvious for 
semiconductors and its empirical verification gives additional support to the qualitative 
usefulness of Phillips' idea. 
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Note added in proof. After submission of this work, Professor J E Enderby drew our attention to work by 
Godefroy and Aigrain (1962), in which a melting criterion for semiconductors relating the melting temperature 
to the band gap was proposed and discussed. 
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